TRAILER AXLE (8K-16K) OWNER'S MANUAL

R

LIPPERT Components°

TABLE OF CONTENTS

Introduction	3
Safety Information	
Break-In Period For Electric Drum Brakes	
Hubs/Drums/Bearings	
Hub Removal	
Brake Drum Inspection	
Bearing Inspection	
Bearing Lubrication - Grease	6
Seal Inspection and Replacement	7
Bearing Adjustment/Hub Replacement	7
Lubrication	8
Bearing Lubrication - Oil	8
Oil Cap and Oil Seal	
Periodic Bearing Inspection	
Spindle Nut Adjustment	8
Disc Brake Option	
Disc Brake Pads	
Disc Brake Caliper	
Electric Brakes	.10
How to Use Lippert Electric Brakes Properly	.11
General Maintenance - Electric Brakes	
Brake Adjustment	
Lubricate Brakes	
Clean and Inspect Brakes	
Magnets	
Shoes and Linings	.13
Axle and Suspension Installation	.13
Suspension Systems	
Double-Eye Leaf Springs	
Slipper Leaf Springs	14
Torsion Suspension System	.15
Inspection	
Suspension Replacement	
Adjustable Spring Seats	
Wheels	.17
Wheel Selection	
Torque Requirements	
Tires	.19
Introduction to Troubleshooting	
Troubleshooting	
Measuring Voltage	
Troubleshooting Chart	ַ∠ו רר
Measuring Amperage	
Amperage Chart	
Maintenance Schedule	
Wiring Diagram Pigtail and Counter Wiring Color Codes	22
Pigtail and Coupler Wiring Color Codes	
Storage Storage Proparation	
Storage Preparation	/

27
28
29
39
40

Introduction

Combining years of experience in the trailer frame and recreational vehicle industry with the newest and most innovative technology, Lippert Components, Inc. introduces The Axle and Running Gear Division.

The following publication is designed to give the customer an easy-to-understand operation and service manual to provide useful and important information. The quality of the Lippert name and the finest materials utilized in the production of the Axles and Running Gear provide you with hubs, brakes, drums and spindles that make trailering and braking the finest in the industry.

Quality comes threefold in Lippert Components, Inc.

- **1.** The finest quality materials.
- 2. The latest technology and design.
- **3.** The quality standards maintained from materials to final assembly.

All three points provide the customer with the best product they can possibly buy and the satisfaction of knowing they can trust the equipment on which they have spent their hard-earned money. Lippert Components, Inc. thanks you for purchasing our Axles and Running Gear. When you speak of Lippert Components, Inc., our quality stands beside you.

Safety Information

AWARNING

The "WARNING" symbol above is a sign that a service or maintenance procedure has a safety risk involved and may cause death or serious injury if not performed safely and within the parameters set forth in this manual.

Always wear eye protection when performing service or maintenance to the vehicle. Other safety equipment to consider would be hearing protection, gloves and possibly a full face shield, depending on the nature of the service.

This manual provides general service and maintenance procedures. Many variables can change the circumstances of the service procedure, i.e., the degree of difficulty involved in the service operation and the ability level of the individual performing the operation. This manual cannot begin to plot out procedures for every possibility, but will provide the general instructions for effectively servicing the vehicle. In the event

the skill level required is too high or the procedure too difficult, a certified technician should be consulted before performing the necessary service. Failure to correctly service the vehicle may result in voiding the warranty, inflicting injury or even death. The owner's manual for your trailer may have more procedures for service and maintenance.

Break-In Period For Electric Drum Brakes

The break-in period is a typical phenomenon with drum brakes and especially electric drum brakes. Electric drum brakes will require a break-in period to achieve full performance. This break-in period applies for new axles and any time new brake shoes and/or magnets are installed as part of regular maintenance. Lippert Components has found through extensive brake testing that the break-in period for our drum brakes can range from 20 to 50 brake applications.

Brakes can be seated in by applying approximately 8-10 volts to the trailer brakes at an initial speed of 40 mph and allowing the truck/trailer combination to slow down to 20 or 25 mph. For best results, do not use truck brakes during this procedure. The trailer brakes will seat in faster by using them to stop both the truck and trailer. The easiest method is to apply the trailer brakes using the manual activation lever located on the in-cab brake controller. Care **MUST** be taken to not overheat the lining material; therefore, brake applications conducted at one-mile intervals will suffice. The driver should feel a noticeable difference in the brake performance during this period, sometimes in as few as 10 applications. After 50 applications, the brake lining material will be fully cured from the heat and develop close to 100% contact with the brake drum surface.

This break-in period not only seats the shoe lining material but also seats in the brake electromagnets. During the break-in period, the linings will wear at a faster rate than they do after they are seated in.

NOTE: Brakes should be manually adjusted after the first 200 miles of operation and periodically thereafter, approximately 3,000 mile intervals.

Hubs/Drums/Bearings

Hub Removal

AWARNING

Lift the trailer by the frame and never the axle or suspension. Do not go under the trailer unless it is properly supported by jack stands. Unsupported trailers can fall causing death or serious injury.

To remove the hub assembly for inspection, maintenance or service, follow the six (6) steps below:

- 1. Lift trailer and support it per manufacturer's requirements.
- 2. Remove the wheel.
- **3.** Remove the grease cap by prying the edge out of the hub. If equipped with oil lubrication, unscrew oil cap using a 1 ¹/₂" socket for 8K, 2 ¹/₄" socket for 10K or a 2 ⁵/₈" socket for 12K and 16K. Let oil drain into pan.
- 4. Pull the cotter pin from the castle nut and remove the outer spindle nut.
- 5. Remove the spindle washer, if equipped.
- 6. Pull the hub off the spindle. Do not let the outer bearing cone fall free of the assembly. The inner bearing cone will be contained by the seal and will not fall out.

NOTE: Brakes may need to be adjusted or backed off to remove drum from spindle.

NOTE: A gear puller may be necessary to remove hub from spindle.

Brake Drum Inspection

The brake shoes contact the drum surface and the magnet contacts the armature. These surfaces are subject to wear and should be inspected periodically.

The drum surface should be re-machined if wear is more than .030" or out of round by more than .015". The drum should be replaced if scoring or wear is greater than .090".

The inner surface of the brake drum that contacts the brake magnet is the armature surface. If the armature surface is scored or worn unevenly, it should not be machined more than .030". The magnets should be replaced whenever the armature surface is refaced and vice versa.

NOTE: Ensure that the wheel bearing cavities are clean and free of contamination before reinstalling bearing and seals. Resurfacing procedures can produce metal chips and dust that can contaminate the wheel bearings and cause failure.

Drum	Maximum Re-bore Diameter
12.25"	12.340"

Bearing Inspection

Wash all grease and oil from the bearing cone using a suitable solvent. Dry the bearing with a clean, lint-free cloth and inspect each roller completely. If any pitting, spalling, or corrosion is present, then the bearing **MUST** be replaced. The bearing cup inside the hub **MUST** be inspected.

NOTE: Bearings **MUST** always be replaced in sets of one cone and one cup.

ACAUTION

Always wear eye protection when servicing the axle, brakes, hubs, springs and wheels. Failure to wear eye protection may result in serious injury.

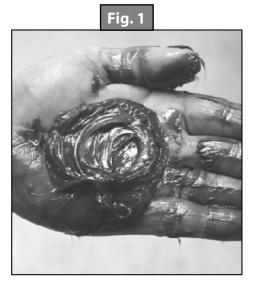
Follow the procedure below to replace the bearing cup:

- 1. Place hub on a flat surface with bearing cup on the bottom.
- 2. With brass drift punch, lightly tap around the small end of the cup to push it out.
- 3. Clean the hub bore. Replace the cup by tapping it back in with the brass drift punch. Cup should be seated against the retaining shoulder in the hub.

NOTE: Consult Bearing Replacement Chart for proper replacement bearings.

NOTE: Replacing the bearing cup is a very precise process. The cup must be perfectly seated when replaced. If the cup is not seated correctly, damage to the assembly may not be covered by the warranty. Consult Lippert Components, Inc. prior to replacing bearing and bearing cup. The trailer should be taken to a certified service center for this work to be done.

ACAUTION


Do not mix lithium, calcium, sodium or barium complex greases. Chemical compatibility problems may occur. If you are changing from one chemical grease to another, be sure all old grease is removed prior to applying new grease. If the old grease is not removed completely, chemical compatibility may result in component failure or damage.

Bearing Lubrication - Grease

Bearing grease should be replaced every 36,000 miles or 12 months, whichever comes first. Remove all old grease from wheel hub and bearings first. Bearings should be packed by machine if possible. Packing bearings by machine is preferable; however, packing by hand is a viable alternative.

Follow these procedures to repack bearings by hand:

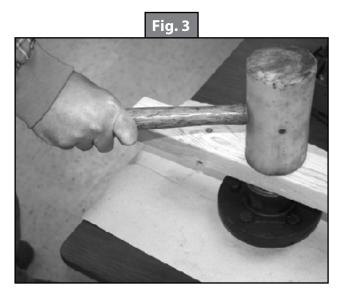
- 1. Place grease into the palm of your hand (Fig. 1).
- 2. Press widest end of bearing into the outer edge of the grease pile, forcing grease into the inner area of the bearing between two adjacent rollers (Fig. 2).
- **3.** Repeat this process while turning bearing from roller to roller until all rollers are coated.
- **4.** Apply a light coat of grease into the bearing cup surface.
- 5. Reassemble bearing into cup.

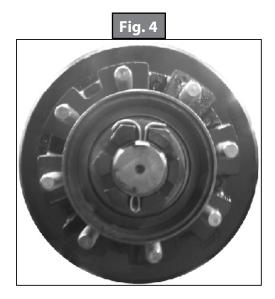
Recommended Wheel Bearing Grease Specifications		
Thickener Type	Lithium Complex	
Dropping Point	230°C (446°F) Minimum	
Consistency	NLGI No. 2	
Additives	EP, Corrosion and Oxidation Inhibitors	
Base Oil	Solvent Refined Petroleum Oil	
Base Oil Viscosity	@40°C (104°F) 150cSt (695 SUS) Minimum	
Viscosity Index	80 Minimum	
Pour Point	-10°C (14°F) Minimum	

Approved Sources		
Mobil Oil	Mobilgrease HP	
Exxon/Standard	Ronex MP	
Kendal Refining Co.	Kendall L-427	
Ashland Oil Co.	Valvoline Val-plex EP Grease	
Pennzoil Prod. Co.	Premium Wheel Bearing Grease 707L	

Seal Inspection and Replacement

Always check the seal to make sure that it is not damaged, nicked, cracked or torn and is in good working order. If there is any question of condition, replace the seal.


Procedure to replace seal:


- 1. Pull seal from the hub with a seal puller. Never push the seal out with the bearing. The bearing may get damaged.
- **2.** Apply a PERMATEX sealant to the outside of the new seal.

NOTE: Do not use PERMATEX on rubber encased seals.

3. Tap the new seal into place using a clean, hardwood block (Fig. 3).

NOTE: When installing a new oil seal, be sure side marked "AIR SIDE" is away from bearing cone.

Bearing Adjustment/Hub Replacement

To adjust bearings or replace removed hub, follow procedures below:

- 1. Place hub, bearing, washers and castle nut back on axle spindle in the reverse order from which they were removed. Castle nut should be torqued to 50 ft.-lb. Hub will rotate during this process.
- 2. Loosen castle nut to back off the torque.
- **3.** Tighten castle nut finger tight until snug.
- **4.** Insert cotter pin. If cotter pin does not line up with hole, back castle nut up slightly until pin can be inserted (Fig. 4).
- 5. Bend cotter pin over to lock nut in place. Nut should be free to move with only the cotter pin keeping it in place.
- 6. Tighten screw in cap to 25 ft-lbs.

Lubrication

Bearing Lubrication - Oil

The axle bearings are lubricated with a SAE 80-90W hypoid gear oil. Periodically check and refill the hub as necessary to the level indicated on the clear plastic oil cap. The oil can be filled through the cap by removing the rubber plug. In order to check oil level, do so after the trailer has been parked for a few minutes.

Recommended Oil Lube for axle bearings:

Oil designation: SAE 90, SAE 80W-90, SAE 75W-90

Approved Sources		
Union Oil Co.	Unocal MP Gear Lube	
Exxon Co.	Gear Oil GX 80W-90	
Mobil Oil	Mobillube SHC 75W-90	
Demosil	Gear Plus 80W-90 GL-5	
Pennzoil Co.	Gear Plus Super 75W-90	

Oil Cap and Oil Seal

The clear plastic oil cap should be tightened to 25 ft-lbs. Over-tightening can damage the sealing o-ring and cause an oil leak.

In order to remove hub/rotor assembly a gear puller may be required. The oil seal is a 2 part seal where the inside diameter of the seal presses onto the spindle journal and the outside diameter of the seal presses into the hub bore. Therefore a gear puller is the most efficient way to remove hub from spindle. A new oil seal **MUST** be installed before reassembly or the old seal will leak upon re-installation and use. When reinstalling a new oil seal, be sure to correctly orient the seal. Most are marked "AIR SIDE." This side **MUST** not be placed towards the oil and bearing or it will fail in service. Install new seal using a block of wood and hammer to drive the seal in the seal bore square until the outer face of the seal is flush with the seal bore face. Do not use Permatex on rubber encased oil seals.

Periodic Bearing Inspection

A physical bearing inspection should be conducted every 36,000 miles or 12 months, whichever comes first. An inspection of the bearing condition can detect early bearing issues. Upon inspection, bearings should look brand new and can be reassembled and used if in this condition. If discoloration, pitting, corrosion, flat spots or some abnormal condition is observed, the bearing and race should be replaced at the same time. Bearings are available at auto part stores, see Components Pages 29-41 for part numbers.

Spindle Nut Adjustment

The proper method to assemble the spindle nut is as follows:

- 1. After hub installation onto spindle, install outer bearing.
- 2. Install spindle washer, if equipped, and thread on spindle nut with slots facing outward.
- **3.** Tighten spindle nut with a pair of slip joint pliers to approx 50 ft-lbs.
- **4.** Back off torque usually ¹/₄ turn so that you can finger tighten the spindle nut.
- 5. Finger tighten, drop cotter pin through slot and hole in spindle. If slot in nut does not align with either hole in spindle, back nut off until it does. Never tighten past finger tight. Use cotter pin hole that provides the least amount of end play clearance.
- 6. Bend legs over end of spindle and be sure legs do not interfere with oil cap upon reassembly.

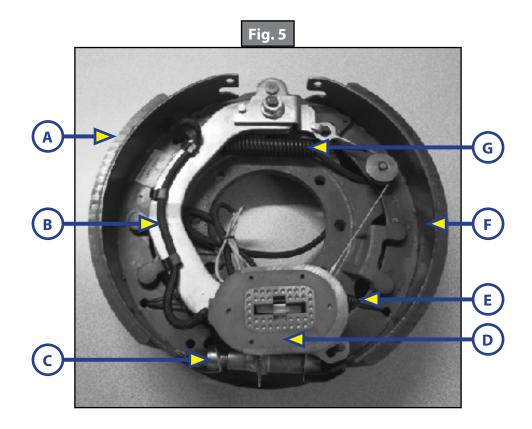
Disc Brake Option

Disc Brake Pads

Disc brake pads are available through auto part stores. Brake pads are a consumable item so be sure to visually check pads every 36,000 miles or 12 months, whichever comes first. Be sure to also check rotor surfaces visually when you are checking the brake pads. Deep groves developing on one or both rotor surfaces can indicate a caliper piston, slider bolt or residual pressure problem if this ever occurs. Brake rotors should be turned when disc brake pads are replaced.

Disc Brake Caliper

The proper mounting torque for the disc brake caliper mounting bolts is 40-50 ft-lbs. If these are removed for servicing the brake system, add blue thread locking compound to the threaded area of the bolt at time of reassembly. Also lubricate the inside of caliper bushings that the slider bolts go through. Be sure to only use silicone based grease. The rubber bushings are not compatible with petroleum-based greases.


Electric Brakes

The basic structure of the Electric Brakes on your trailer will resemble the brakes on your car or tow vehicle, with one major difference: your trailer implements an Electric Actuation system and your tow vehicle utilizes a hydraulic system.

The Electric Braking System operates in the following order of steps.

Refer to the Electric Braking System Diagram and the brake diagram (Fig. 5) to follow along.

- 1. Electric current is supplied to the trailer's braking system when the tow vehicle's brakes are applied.
- 2. From the tow vehicle's battery, the electricity flows to the brake's electromagnet.
- **3.** When energized the magnets are attracted to the rotating surface of the drums.
- **4.** This moves the actuating levers in the direction the drums are turning.
- 5. The actuating cam at the end of the shoe forces the primary shoe out to the drum surface.
- **6.** The force of the primary shoe actuates the secondary shoe to contact the drum.
- 7. The force applied to the brake drum can be increased by elevating the current flow to the magnet.

Callout	Description
A	Primary Shoe
В	Actuating Lever
C	Adjuster
D	Magnet
E	Adjusting Spring
F	Secondary Shoe
G	Retracting Spring

How to Use Lippert Electric Brakes Properly

The Lippert Components, Inc. Electric Braking System is synchronized with the tow vehicle brakes. Never attempt to stop the combined load of the tow vehicle and the trailer by using either the tow vehicle brakes or the trailer brakes only. They are designed to work together.

Small manual adjustments may occasionally be necessary to accommodate changing loads and driving conditions. Synchronization of tow vehicle to trailer braking can only be accomplished by road testing. Locking up, excessive grab, or delayed application is quite often due to the lack of synchronization between the tow vehicle and the trailer being towed. High voltage (2V+), Low voltage (2V-) or improperly adjusted brakes are the most common causes of these problems and can be easily remedied.

Prior to any adjustments, trailer brakes should be burnished-in by applying the brakes 20-30 times with a 20 mph decrease in speed, e.g. 40 mph to 20 mph. Allow ample time for brakes to cool between application. This allows the brake shoes and magnets to begin seating to the brake drum.

Trailer Wire Gauge Chart		
Wire Gauge and Type	# of Axles	Length of Run
16 Ga Stranded Copper	1	N/A
14 Ga Stranded Copper	2	Under 30ft. (9.1m) from hitch to center of axles
12 Ga Stranded Copper	2 or 3	Over 30ft. (9.1m) from hitch to center of axles

General Maintenance - Electric Brakes

Brake Adjustment

AWARNING

Prior to testing or adjusting brakes, be sure area is clear of any persons and vehicles. Failure to perform test in a clear area may result in death or serious injury.

Lippert Components, Inc. Electric Brakes are automatic adjust only. If manual adjusting is needed, the following 6-step procedure can be utilized. The brakes should be adjusted in the following manner:

1. Jack up trailer and secure on adequate capacity jack stands. Follow trailer manufacturer's recommendations for lifting and supporting the trailer. Make sure the wheel and drum rotates freely.

AWARNING

Lift the trailer by frame and never the axle or suspension. Do not go under the trailer unless it is properly supported by jack stands. Unsupported trailers can fall causing death or serious injury.

- 2. Remove the adjusting hole cover from the adjusting slot on the bottom of the brake backing plate.
- **3.** With a screwdriver or standard adjusting tool, rotate the starwheel of the adjuster assembly to expand the brake shoes. Adjust the brake shoes out until the pressure of the linings against the drum makes the wheel very difficult to turn.
- 4. Then rotate the starwheel in the opposite direction until the wheel turns freely with a slight lining drag.
- **NOTE:** A second screwdriver will be needed to push the auto adjusting lever away from the adjuster starwheel so that the starwheel can be rotated backwards.
- 5. Replace the adjusting hole cover and lower the wheel to the ground.
- 6. Repeat the above procedure on all brakes. For best results, the brakes should all be set at the same clearance.

Lubricate Brakes

Prior to reassembling the brake drum assembly, remember to apply a light film of white grease or an antiseize compound on the brake anchor pin, the actuating arm bushing and pin, and the areas on the backing plate that are in contact with the brake shoes and magnet lever arm. In addition, apply a light film of grease on the actuating block mounted on the actuating arm.

Clean and Inspect Brakes

In the event the braking system encounters symptoms of improper application or failure, immediate inspection and service **MUST** be implemented. During normal use, servicing the braking system once a year is considered normal. Increased usage will require service on a regulated schedule based on performance. As magnets and shoes become worn, they need to be changed to maintain maximum braking capability.

Be sure, when disassembling brakes for cleaning, to clean the backing plate, magnet arm, magnet and shoes. Also, make sure that any and all parts removed for cleaning are placed back into the same brake drum assembly. This is also an excellent time to check for parts that have become loose or worn.

AWARNING

Older brake linings may have a potential asbestos dust hazard.

Older brake linings have the potential to contain asbestos dust, which has been linked to serious or fatal illnesses. Certain precautions **MUST** be taken when servicing brakes:

- 1. Avoid creating and/or breathing any brake dust.
- 2. Do not machine, file, or grind the brake linings.
- **3.** Remove with a damp brush or cloth. Dry brushing or compressed air will cause the dust particles to become airborne.

<u>Magnets</u>

This electric braking system utilizes an electromagnet to actuate the brake shoes. These high-quality magnets provide superior force and friction to safely and effectively stop the trailer. These magnets should be inspected and serviced on the same schedule as the rest of the axle system, at least once a year for normal use and more often if the trailer is used extensively. Abnormal or uneven wear is a sign that the magnet needs to be replaced. Check the surface of the magnet with a straight edge to check for uneven wear. The surface of the magnet should be completely flat.

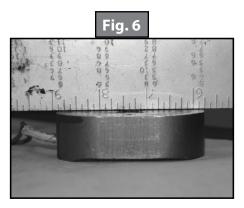

If the magnet's coil is exposed in any way, even if normal wear is evident, the magnets should be replaced immediately. If the electromagnets are replaced, the drum armature surface should also be refaced. If a magnet is replaced on one side of an axle, it is recommended that the magnet on the opposite brake assembly also be replaced to ensure even braking capacity.

Fig. 6 in the "Shoes and Linings" section shows an Electro-Magnet with little or no wear. If there are any pronounced gaps on the surface of the Electro-Magnet, the magnet should be replaced.

Shoes and Linings

Linings should be replaced if the material is worn to ¹/₁₆" or less. Shoes should also be replaced if they become contaminated with grease or oil or have become scored, pitted or gouged. Heat cracks are normal and rarely require attention. When replacing shoes, both shoes on the same brake and the brakes on the same axle should all be replaced at the same time, once again ensuring even braking capacity.

After replacing shoes and linings, your trailer brakes should be burnished-in by applying the brakes 20-30 times with a 20 mph decrease in speed, e.g. 40 mph to 20 mph. Allow ample time for brakes to cool between application. This allows the brake shoes and magnets to begin seating to the brake drum.

Axle and Suspension Installation

The single most important portion of axle installation is parallel alignment of the trailer axle(s) to the tow vehicle or drive axle(s). Parallel installation allows for correct and safe control, prolonged tread life and will all but eliminate dog-tracking. Proper alignment is most readily achieved by measuring from the center of the trailer king pin to the center of each end of the axles.

Lippert Components, Inc. tubular axles are made of high strength steel to prevent metal fatigue and provide the best possible welding conditions. The round tubular axles allow for even and uniform structure.

ACAUTION

Always wear eye protection when servicing the axle, brakes, hubs, springs and wheels. Failure to wear eye protection may result in serious injury.

Suspension Systems

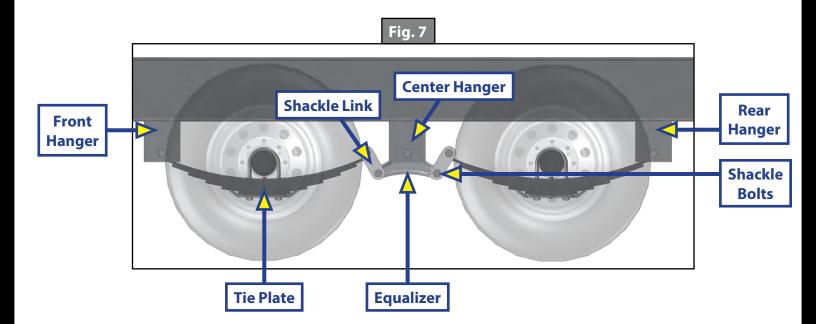
The suspension systems incorporated into Lippert Component, Inc. axles are designed to provide the following benefits:

- **1.** Attach the axle to the trailer.
- 2. Dampen the effects of road shock.
- **3.** Provide stability to the trailer.

All Lippert suspension systems are available in single and multiple axle configurations. For specific or custom applications, please contact Lippert Components, Inc. Axle Division.

Double-Eye Leaf Springs

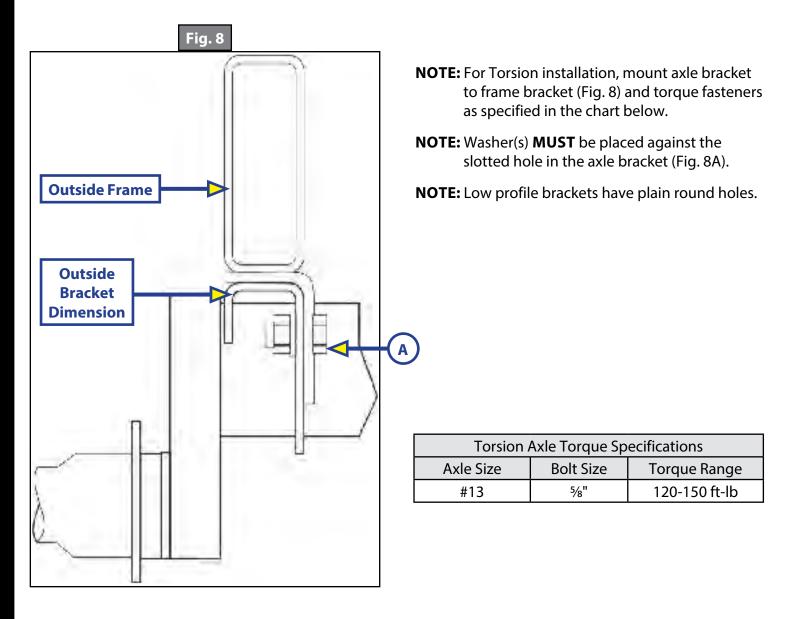
Double-eye leaf springs have eyes at either end of the spring assembly with nylon bushings to assist in preventing wear. U-bolts hold the springs to the axle with a plate.


The articulation of this suspension occurs when the eyes rotate on the wear surfaces provided in eyes of the springs and on the equalizers. This suspension is also available in single and multiple axle configurations. In trailers with 2 or more axles, the additional movement is maintained by an equalizer. This feature allows for even load handling from axle to axle.

Double-eye suspension systems are available on 8,000 lb. axles. Tandem and triple axle mounting kits are available for both 33" and 35" axle spacing.

Slipper Leaf Springs

Slipper springs have a loop eye formed on one end and a reverse radius on the other. The front eye is secured to either the front hanger or rear of the equalizer with a bolt and nut. The slipper end rides against a wear block located in either the front of the equalizer or the rear hanger.


A keeper bolt or strap is placed under the slipper end to contain spring when the trailer is lifted off the ground. 8K tandem and triple axle attaching kits are available for both 33.5" and 36" axle spacing. 10K, 12K and 16K tandem and triple axle kits are also available for 42.25" or 48.25" axle spacing.

Torsion Suspension System

NOTE: The Torsion Suspension system applies only to the 8K and 10K trailer axles.

- 1. The Lippert Components, Inc. Torsion Suspension system is designed to offer superior qualities over leaf spring technology. The Lippert Components, Inc. Torsion Suspension system is bracketed to the trailer's frame and housed inside the trailer axle's tube.
- 2. The spindle is connected to a swing arm, the swing arm is connected to a square inner bar that is sheathed in rubber and as the swing arm rotates and experiences the torque and resistance of driving conditions, the characteristics of the rubber absorb and distribute the load providing benefit over leaf spring suspensions.
- **3.** The Lippert Components, Inc. Torsion Suspension system requires very little attention in regards to maintenance. Normal inspection of the entire Lippert Components, Inc. Trailer Axle system can be applied to the Torsion Suspension system. See inspection procedures for system components in this manual.

Inspection

All the components of your suspension system should be visually inspected for signs of wear, damage or loose fasteners at least every 36,000 miles or 12 months, whichever comes first. When replacing or tightening loose fasteners, consult the Equalizer and Spring Eye Nut Torque Specifications for correct torque values.

Equalizer and Spring Eye Nut Torque Specifications		
Bolt Type	Torque	
%16" 8K U-Bolt Nuts	90 ft-lbs	
5⁄8" 10K U-Bolt Nuts	95 ft-lbs	
5⁄8" 12K and 16K U-Bolt Nuts	115 ft-lbs	
%16" Shoulder Bolts	35 ft-lbs	
% Non-Shoulder Bolts	Snug	
10K, 12K and 16K Spring Eye Bolt	200 ft-lbs	
10K, 12K and 16K Center Hanger/Equalizer Bolt	300 ft-lbs	
Keeper Bolt	Snug	

Worn spring eye bushings or sagging or broken springs should be replaced using the following method:

- **1.** Support the trailer with the wheels just off the ground. Follow the trailer manufacturer's recommendations for lifting and supporting the trailer.
- 2. After the trailer is properly supported, place a suitable block under the axle tube near the end to be repaired. This block is to support the weight of the axle only so that suspension components can be serviced or replaced.
- **3.** Disassemble the U-bolts, nuts, and tie plates.
- **4.** Remove the spring eye bolts and the spring.
- 5. If the spring eye bushings are to be replaced, press out the old rubber bushing with a press.
- 6. Apply grease to the outside diameter of the new rubber bushing to aid installation. Press the new bushing into the spring eye with a press until centered with spring eye.
- 7. Reinstall repaired or replaced components in reverse order.

NOTE: For multiple axle trailers, the weight of each axle must be supported as outlined in Step 2 before disassembly of any component of the suspension system.

AWARNING

Lift the trailer by the frame and never the axle or suspension. Do not go under the trailer unless it is properly supported by jack stands. Unsupported trailers can fall causing death or serious injury.

ACAUTION

Always wear eye protection when servicing the axle, brakes, hubs, springs and wheels. Failure to wear eye protection may result in serious injury.

If the equalizer or equalizer bushings **MUST** be replaced, follow the instructions above for lifting and supporting the trailer and then proceed as follows:

- 1. With both axles blocked up, remove the spring eyebolt, keeper bolt, and equalizer bolt from the equalizer to be repaired or replaced.
- 2. Press the old nylon bushing out of the equalizer.
- **3.** Reassemble in reverse order.

Suspension Replacement

- 1. Make sure springs are on straight. Align spring eyes to front hanger. Insert spring eye bolts but do not torque at this point.
- **2.** Assemble springs into equalizer.
- **3.** After leveling equalizer to frame, torque equalizer nuts and spring eye nuts.

Adjustable Spring Seats

The procedure for setting adjustable spring seats can be found on LIP Sheet 0226, which is available on the Lippert Components Customer Service website.

Wheels

Wheel Selection

When specifying or replacing your trailer wheels it is important that the wheels, tires, and axle are properly matched. The following characteristics are extremely important and should be thoroughly checked when replacement wheels are considered:

- 1. Bolt Circle. Wheels have many bolt circle variations and some are so close that it could be possible to attach an inappropriate wheel that does not match the axle hub.
- 2. Capacity. Wheel load capacity should match tire and trailer max. load ratings.
- **3. Offset.** The relationship of the center line of the tire to the hub face of the axle should match any replacement. Failure to match offset may result in reducing the carrying capacity of your axle.
- 4. **Rim Contour.** Replacement wheels should be direct replacements to match the rim contour.

AWARNING

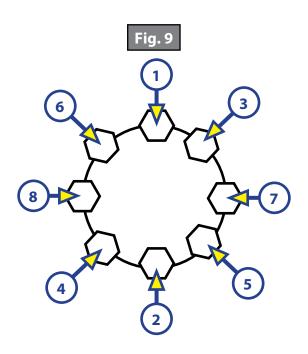
Use only rim contours suggested by manufacturer. Failure to use correct rim contour may cause dramatic separation of tire and wheel and could cause death or serious injury.

AWARNING

Attempting to modify or repair a wheel can cause unsafe conditions that may result in an explosion. Air pressure on a weakened or cracked rim can cause death or serious injury.

Torque Requirements

It is extremely important to apply and maintain proper wheel mounting torque on your trailer axle. Torque wrenches assure the proper amount of torque is being applied to a fastener. Use no other method to torque fasteners.


AWARNING

Proper and accurate torque MUST be maintained to prevent wheels from loosening, studs from cracking and/or breaking or other possible hazardous breakage resulting in death or serious injury.

Be sure to use only the fasteners matched to the cone angle of your wheel (usually 60° or 90°). The proper procedure for attaching your wheels is as follows:

- 1. Start all bolts or nuts by hand to prevent cross threading.
- 2. Tighten bolts or nuts in sequence (see Wheel Torque Requirement Chart).
- **3.** Tightening fasteners should be done in stages. Follow the recommended sequence (Fig. 9). Tighten fasteners per Wheel Torque Requirement Chart.
- **4.** Wheel nuts/bolts should be torqued before first road use and after each wheel removal. Check and re-torque after the 10 and 25 miles and again at 50 miles. A periodic check during regular service is recommended.

Wheel Torque Requirement Chart				
Wheel Size	Stud Size	Torque Sequence		
Wheel Size		1st Stage	2nd Stage	3rd Stage
16" Dual and 17.5" Cone Nut	⁵ ⁄8″	50-60 ft-lb	100-120 ft-lb	190-210 ft-lb
16" Dual and 17.5" Flange Nut	⁵ ⁄8″	50-60 ft-lb	150-200 ft-lb	275-325 ft-lb
17.5" Dual Flange Nut	M22	50-100 ft-lb	250-300 ft-lb	450-500 ft-lb

<u>Tires</u>

Prior to mounting tires onto wheels, be sure the rim size and contour are approved by the Tire and Rim Association Yearbook or the tire manufacturers catalog. In addition, confirm that the tire will carry the rated load. If the load is not evenly distributed on all tires, use the tire rated for the heaviest wheel position. The Rubber Manufacturers Association or the tire manufacturers guidelines should be consulted for mounting procedures.

Tire inflation pressure is the most important factor in tire life. Tire pressure should always be what is recommended by the manufacturer for the load. Always check pressure cold before operation. Do not bleed air from tires when they are hot. Check inflation pressure weekly during use to insure maximum tire and tread life.

The Tire Wear Diagnostic Chart will help pinpoint the causes and solutions of tire wear problems.

NOTE: Tire wear should be checked frequently because once a wear pattern becomes firmly established in a tire it is difficult to stop, even if the underlying cause is corrected.

Problem	Probable Cause	Corrective Action
Center Wear	Over-inflation	Adjust pressure to particular load per tire catalog.
Edge Wear	Under-inflation	Adjust pressure to particular load per tire catalog.
Side Wear	Loss of camber or overloading	Make sure load does exceed axle rating. Call Lippert Service & Warranty to advise.
Toe Wear	Incorrect Toe-in	Call Lippert Service & Warranty to advise.
Cupping	Out-of-balance	Check bearing adjustment and balance tires.
Flat Spots	Wheel lockup and tire skidding	Avoid sudden stop if possible and adjust brakes.

Introduction to Troubleshooting

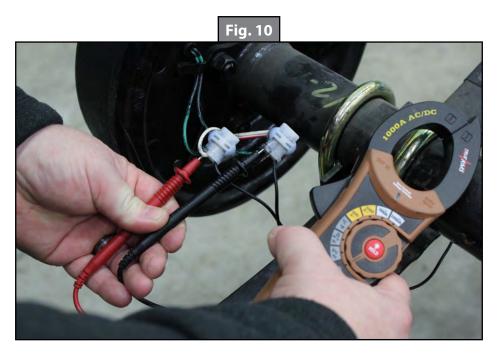
The following section is a guideline for ensuring operation of your braking system. The safety of you, those traveling with you and those sharing the road is paramount and it starts with the ability to safely stop the tow vehicle and the towed vehicle.

Troubleshooting

Most brake malfunctions can be corrected by utilizing the Troubleshooting Chart. Mechanical failure is the most common form of malfunction. However, if the brake system fails and it's not mechanical, it is usually electrical. A voltmeter and ammeter are essential tools to diagnose these problems.

Mechanical problems are mostly self-evident; something is bent or broken. Consult the Troubleshooting Chart to determine the probable cause and corrective actions for a variety of issues with the braking system.

Remember to use only Lippert Components, Inc. replacement parts on these systems. Consult the Limited Warranty or call our Service Department for any other related issues.


Measuring Voltage

The Braking System voltage is measured at the two lead wires of the magnet on any brake. Use the pin probes inserted through the insulation of the lead wires. To ensure that the battery is indicating a full charge, the towing vehicle engine should be running with the trailer coupler connected when checking the voltage.

Voltage in the system should begin at 0 volts and, as the brake pedal of the tow vehicle is applied, voltage will gradually increase to about 12 volts. If the system does not indicate at least 12 volts, problems may occur in the wiring of the system, the battery or alternator of the tow vehicle.

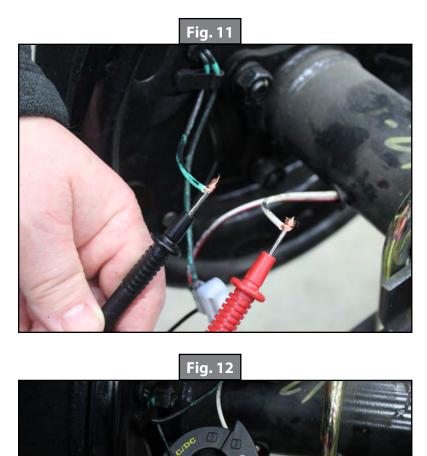
When the brakes are applied, a gradual increase in voltage is preferable to a quick increase to 12 volts. A gradual increase in voltage ensures smooth and firm trailer braking. A quick increase in voltage will cause the braking system to feel like the trailer is grabbing too quickly.

Taking a voltage reading is usually done with probes inserted into the wire connector (Fig. 10).

Troubleshooting Chart

Problem	Probable Cause	Corrective Action
	Open circuits	Find and correct
No brakes	Short circuits	Test and correct
	Severe under-adjustment	Adjust brakes
	Grease or oil on magnets or linings	Clean or replace
	Corroded connections	Clean and correct cause of corrosion
	Worn linings or magnets	Replace
Weak brakes	Scored or grooved brake drums	Machine or replace
	Improper synchronization	Correct
	Under-adjustment	Adjust brakes
	Glazed Linings	Re-burnish or replace
	Under-adjustment	Adjust
	Improper synchronization	Correct
Locking brakes	Loose, bent or broken brake components	Test and correct
	Out-of-round brake drums	Machine or replace
	Insufficient wheel load	Adjust system resistor and synchronize
	Broken wires	Test and correct
Intermittent brakes	Loose connections	Repair or replace
	Faulty ground	Find and repair
	Wrong magnet lead wire color	Adjust
	Incorrect adjustment	Correct
Brakes pull to one side	Grease or oil on linings or magnets	Clean or replace
	Broken wires	Find and repair
	Bad connections	Find and repair
Harsh brakes	Under-adjustment	Adjust
	Improper synchronization	Correct
	Under-adjustment	Adjust
Noisy brakes	Lack of lubrication	Lubricate
NOISY DIAKES	Broken component	Replace component
	Incorrect brake components	Correct
Surging brakes	Grease or oil on linings or magnets	Clean or replace
	Out-of-round or cracked brake drums	Machine or replace
	Over-adjustment	Readjust
	Out-of-round brake drums	Machine or replace
	Incorrect brake components	Replace
Dragging brakes	Loose, bent or broken brake components	Replace
	Faulty breakaway switch	Repair or replace
	Loose wheel bearing adjustment	Adjust
	Bent spindle	Replace axle

NOTE: If all trailer lights and brakes do not work, check your wiring plug connection and make sure the ball is making solid contact with the coupler (that is how a trailer is grounded). Too much grease or not using dielectric grease on the ball and coupler can cause this to happen.


Measuring Amperage

The Braking System amperage is the amount of current flowing through the system when all magnets have been energized. The amperage will change proportionately with the voltage. To ensure that the battery is indicating a full charge, the towing vehicle engine should be running with the trailer coupler connected when checking the voltage.

If a resistor is used in the brake system, it **MUST** be set at zero or bypassed completely to obtain the maximum amperage reading. Individual amperage draw can be measured by inserting the ammeter in the line at the magnet you want to check. Disconnect one of the magnet lead wire connectors and attach the ammeter between the two wires. Consult the Amperage Chart section for normal amp readings.

Make sure that the wires are properly reconnected and sealed after testing is completed.

Testing for amperage can be done with probes (Fig. 11) or alligator clips on the leads or an amp clamp (Fig. 12).

Rev: 01.19.2018

<u>Amperage Chart</u>

Amps/Magnet	Two Brakes	Four Brakes	Six Brakes
3.0	6.0	12.0	18.0

Low or no voltage are the most common problem with the Braking System. Amperage at the brakes is also a relatively common issue. Common causes of these conditions are:

- **1.** Low quality electrical connections
- 2. Open circuits
- **3.** Insufficient wire gauge
- 4. Broken wires
- 5. Blown fuses (fusing of brakes is not recommended)
- **6.** Short circuits (indicated by high amperage)

Possible causes of shorts are:

- 1. Shorted magnet coils
- 2. Bare wires contacting a grounded object

Finding the cause of a short circuit in the system is done by isolating one section at a time. If the high amperage reading drops to zero by unplugging the trailer, then the short is in the trailer. If the amperage reading remains high with all the brake magnets disconnected, the short is in the trailer wiring.

All electrical troubleshooting procedures should start at the controller. Most complaints regarding brake harshness or malfunction are traceable to improperly adjusted or nonfunctional controllers. See your controller manufacturer's data for proper adjustment and testing procedures. For best results, all the connection points in the brake wiring should be sealed to prevent corrosion. Loose or corroded connectors will cause an increase in resistance which reduces the voltage available for the brake magnets.

Maintenance Schedule

ltem	Function Required	3,000 Miles	12 Months / 36,000 Miles (Whichever comes first)
Brakes	Test that they are operational.		At Every Use
Oil Level	Check oil level in hubs, if equipped.		At Every Use
Brake Adjustment	Adjust to proper operating clearance. Not required for self-adjusting brakes.	•	
Brake Magnets	Inspect for wear and current draw.		•
Brake Linings and Pads	Inspect for wear or contamination.		•
Hub/Drum and Rotors	Inspect for abnormal wear or scoring.		♦
Wheel Bearing	Inspect for corrosion or wear. Clean and repack.		♦
Seals	Inspect for leakage. Replace if removed.		•
Springs	Inspect for wear, loss of arch.		◆
Suspension Parts	Inspect for bending, loose fasteners, wear.		•
U-bolts	Tighten to specified torque valves		♦

Wiring Diagram

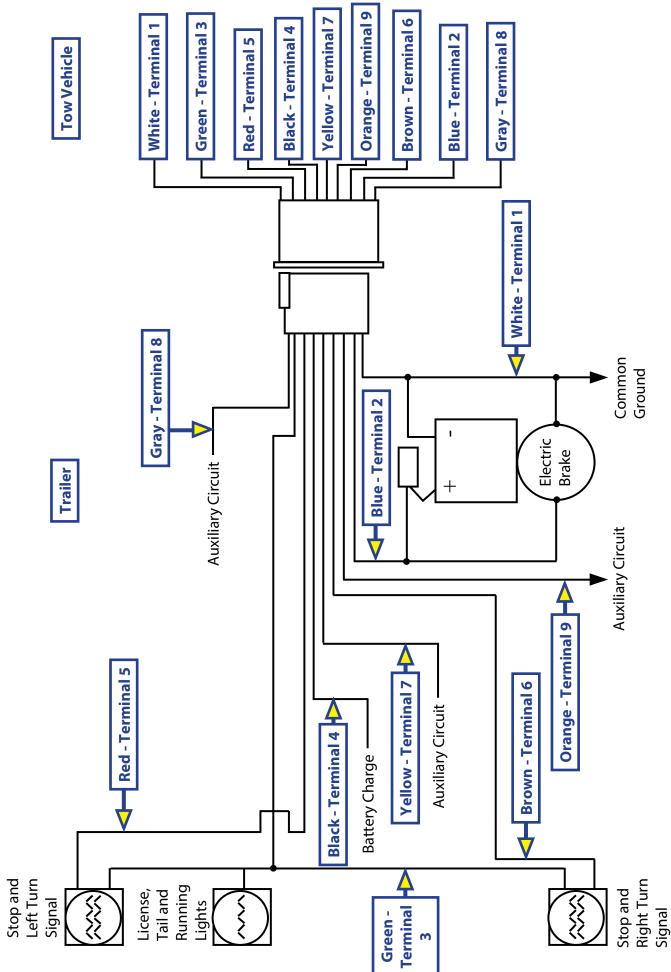
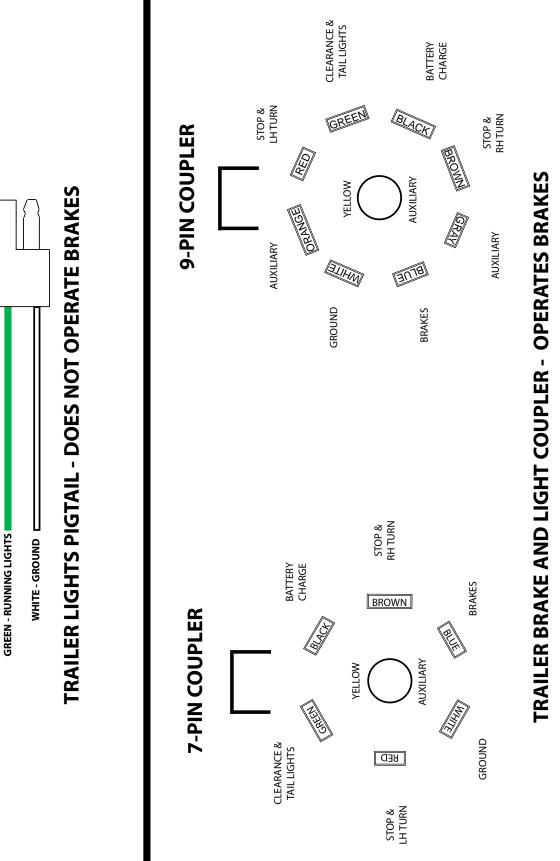
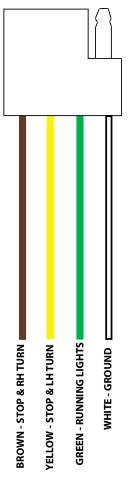




Fig. 8

Storage

Storage Preparation

If your trailer is to be stored for an extended period of time, the trailer will need to be prepared prior to going into storage. Follow these guidelines to set up your trailer for storage:

- 1. If the trailer has an emergency breakaway battery, remove it and store it inside, out of the weather. Charge the battery at least every 90 days.
- 2. Jack up the trailer and place jack stands under the trailer frame so that the weight will be off the tires. Follow trailer manufacturer's guidelines to lift and support the trailer.
- **3.** Lubricate mechanical moving parts such as the hitch and suspension parts, that are exposed to the weather.
- **4.** 4. In the case of boat trailer axles that are subject to repeated immersion, remove brake drums; clean, dry and re-lubricate moving brake components; inspect bearings clean and re-lubricate.

AWARNING

Lift the trailer by the frame and never the axle or suspension. Do not go under the trailer unless it is properly supported by jack stands. Unsupported trailers can fall causing death or serious injury.

Extended Storage Inspection Procedures

Trailer should remain on jack stands during this procedure:

- 1. Remove all wheels and hubs or brake drums. Re-install drum to same spindle and brake from which it was removed.
- 2. Inspect suspension for wear.
- **3.** Check tightness of hanger bolt, shackle bolt, and U-bolt nuts of the suspension for correct torque.
- 4. Check brake linings, brake drums and armature faces for excessive wear, scoring, damage or corrosion.
- 5. Check brake magnets with an ohmmeter. The magnets should check 3.2 ohms. If shorted or worn excessively, they must be replaced.
- 6. Lubricate all brake moving parts using a high temperature brake lubricant.
- 7. Remove any rust from braking surface and armature surface of drums with fine emery paper or crocus cloth. Be sure to protect bearings from contaminating dust.
- 8. Inspect oil or grease seals for wear or nicks. Replace if necessary.
- 9. Lubricate hub bearings.
- **10.** Re-install hubs and adjust bearings.
- 11. Mount and tighten wheels.

NOTE: Avoid getting any grease or oil on brake linings and pads or magnet surfaces.

Trip Preparation Checklist

The following checklist offers several guidelines to prolonging the quality of your running gear and will provide trustworthy and safe trailering for years to come.

Using the following checklist before starting a trip with your trailer is highly recommended. Allow plenty of time prior to any trip for any service or repairs that may need to be done before using the trailer.

- 1. Maintenance schedule should be current.
- 2. Inspect hitch for corrosion, lubrication and wear.
- **3.** Inspect safety chains for rust and wear. Engage chains and breakaway switch actuating chain securely. Breakaway battery should be fully charged.
- 4. Electronic coupler must be secure. Run check on all lights and brake engagement and synchronization.
- 5. Load trailer with 10% of total weight on the hitch end of trailer. Smaller trailers' front end load should be increased to 15%.
- **6.** Do not overload. Consult your trailers i.d. plate for gross vehicle weight restrictions.
- 7. Tires should be inflated to manufacturer's specs. Inspect tires for any damage or wear.
- 8. Inspect lug nuts/bolts. All should be torqued to spec. (See Page 16 for specs.)
- **9.** Check torque of hanger bolt, shackle bolt, and U-bolt nuts on suspension.
- **10.** Check that your trailer is towing level. Adjust hitch height if necessary to level trailer.

CUSTOMER SERVICE - TRAILER

PLANT #39 1902 W. SAMPLE ST. SOUTH BEND, IN 46619 PH: (574) 537-8900 FAX: (574) 534-7161 E-MAIL: trailerwarranty@lci1.com WEBSITE: www.lci1.com

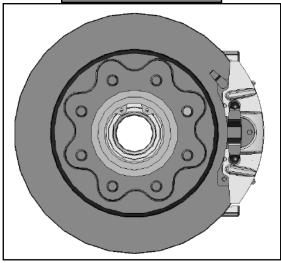

Lippert Components **MUST** be notified of all issues prior to work being performed. For the quickest and most efficient response, Lippert Service & Warranty can be reached via e-mail at trailerwarranty@lci1.com. Submissions should include full trailer info including full VIN, Model, Date of Mfr, Date of Purchase and Retail Owner name or by filling out the Repair Request Form. The Repair Request Form and other service forms can be found online in addition to all owners manuals and informational publications. See specific web addresses below.

ONLINE MANUALS, TECHNICAL INFORMATION & SERVICE FORMS

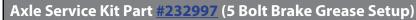
To find manuals, technical information, and service forms, please visit www.lci1.com/customerservice.

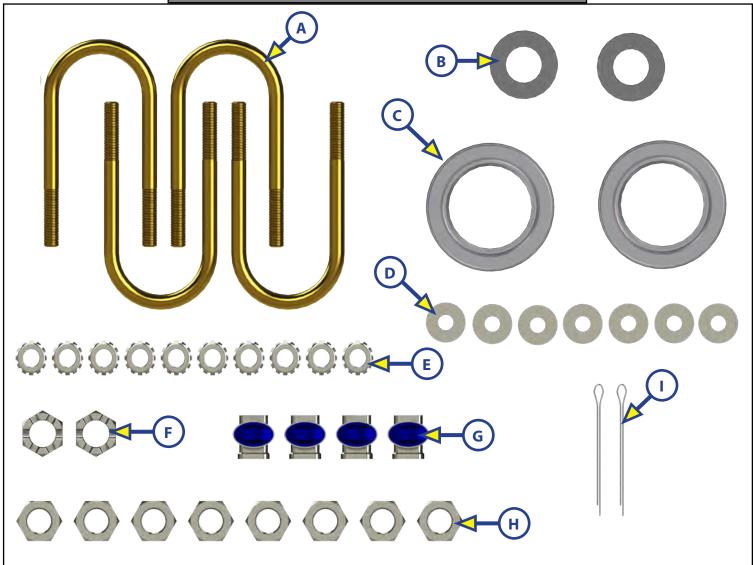
8,000-LB AXLE WHEEL END COMPONENTS

Callout	Part #	Description
A	<u>122255</u>	Grease Zerk (Lubed)
D	277223	Oil Cap, Clear
В	2772231	Oil Cap, Black
C	<u>122081</u>	Spindle Nut; 1" - 14
D	<u>179660</u>	Spindle Washer; 1.06 x 2.00 OD
E	129752	Outer Bearing Cone (02475)
F	168687	Outer Bearing Cup (02420)
G	<u>183804</u>	Rubber Cap Plug
Н	277215	O-Ring
I	<u>122075</u>	Cotter Pin; .120" x 1.75"
J	176321	Flanged Wheel Nut; ¾ - 18
К	<u>134581</u>	Cone Wheel Nut; %6" - 18 - 60°
L	<u>175704</u>	Stud; %6" - 18 GR8
М	<u>175705</u>	Stud; 5%" - 18 GR8
	2772101	Brake Hub; 865 - 12 ¼" BRK; 4.75" Pilot
N	2772121	Brake Hub; 865 - 5/8"; 12 1/4" BRK; 4.75" Pilot
	347627	Brake Hub; 865 - 5/8"; 12" BRK; 4.75" Pilot
	359552	Brake Hub; 865 - 12" BRK; 4.75" Pilot
0	276712	Oil Hub Seal
Р	<u>124287</u>	Inner Bearing Cup (25520)
Q	<u>122066</u>	Inner Bearing Cone (25580)
R	<u>122088</u>	Grease Seal Shaft; 2.25"

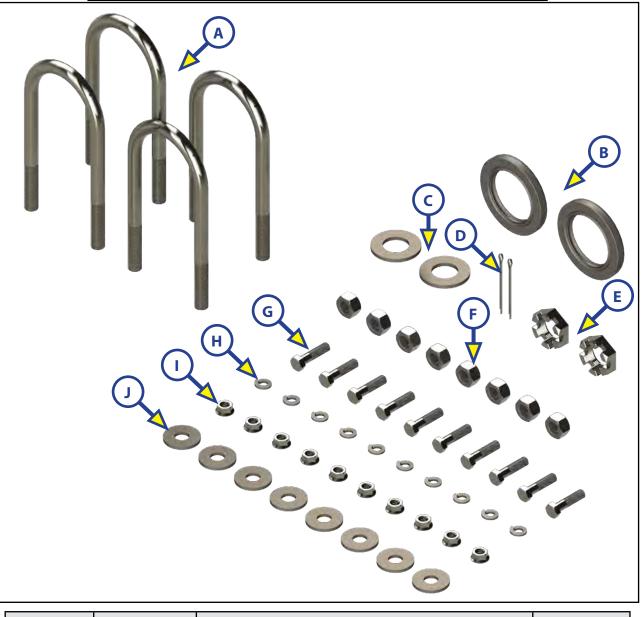

8,000-LB AXLE WHEEL END COMPONENTS

AXLES AND SUSPENSION

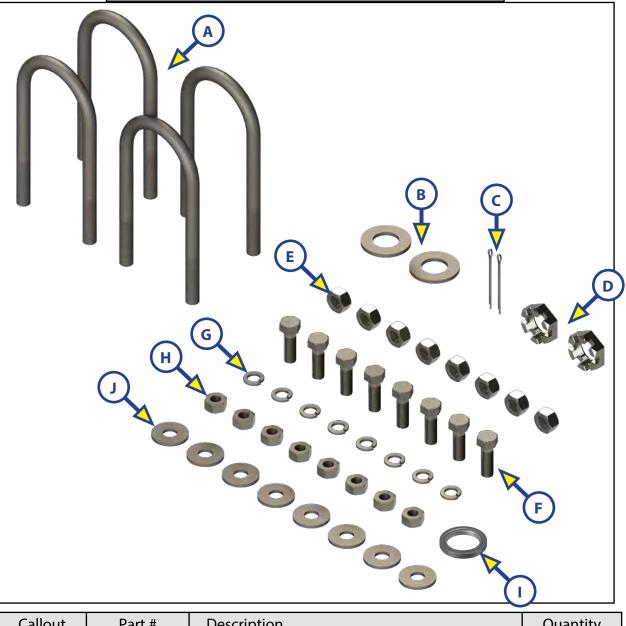

Part #	Description
336252	Brake; Hydraulic; 12.25 x 3.38; 4 Bolt (Left Hand)
3362521	Brake; Hydraulic; 12.25 x 3.38; 4 Bolt (Right Hand)
<u>298277</u>	Brake; Electric; 12.25 x 3.38; 4 Bolt (Left Hand)
<u>298279</u>	Brake; Electric; 12.25 x 3.38; 4 Bolt (Right Hand)


Disc Brake Assembly

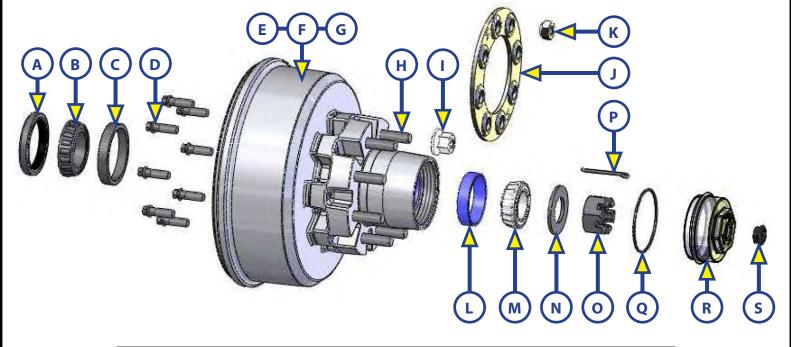
Part #	Description
307319	Disc Brake; Rotor; 865 - ¾" Studs, 5 Bolt Flange
307318	Disc Brake; Rotor; 865 - %6" Studs
286594	Caliper Mounting Bracket for 5 Bolt Brake Flange
158797	Caliper Mounting Bracket for 4 Bolt Brake Flange
134421	Brake Caliper Assembly, includes Pads and Fittings



Callout	Part #	Description	Quantity
A	1963511	U-Bolt; %6 - 18 x 7.25 for 3" Tube YZ	4
В	<u>179660</u>	Flat Hardened SAE Washer; 1.06 ID x 2.00 OD	2
C	<u>122088</u>	Double Lip Grease Seal (5,200-7,000)	2
D	<u>170997</u>	Flat USS Hardened Washer; %6"	8
E	<u>122077</u>	Brake Nut Locking Keps Clear Dich	10
F	<u>122081</u>	Castle Nut; 1 - 14	2
G	<u>122084</u>	Sealed Wire Connector	4
Н	<u>182274</u>	Hex Nut; %16" - 18 GR8	8
I	<u>122075</u>	Cotter Pin; .120" x 1.75"	2


Axle Service Kit Part #309893 (5 - Bolt Disc Brake Grease Setup)

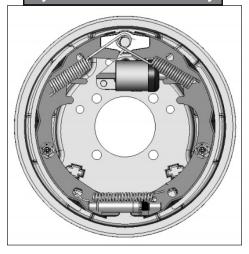
Callout	Part #	Description	Quantity
А	1963511	U-Bolt; %6" - 18 x 7.25" for 3" tube	4
В	122088	Double Lip Grease Seal (5,200-7,000)	2
C	179660	Flat Hardened SAE Washer; 1.06 ID x 2.00 OD	2
D	<u>122075</u>	Cotter Pin; .120 x 1.75	2
E	<u>122081</u>	Castle Nut; 1 - 14	2
F	<u>182274</u>	Hex Nut; %6" - 18 GR8	8
G	135835	Tap Bolt; ¾" - 16 x 1 ½ GR5 ZN FTHD ST	10
Н	126030	Washer; .385" x .68" x .094"	10
I	<u>119072</u>	Flange Nut; ¾" - 16 GR5	10
J	<u>170997</u>	Flat USS Hardened Washer; %	8



Axle Service Kit Part #313729 (4 - Bolt Brake Oil Setup)

Callout	Part #	Description	Quantity
A	1963511	U-Bolt; %6" - 18 x 7.25" for 3" tube	4
В	179660	Flat Hardened SAE Washer; 1.06 ID x 2.00 OD	2
С	<u>122075</u>	Cotter Pin; .120 x 1.75	2
D	<u>122081</u>	Castle Nut; 1 - 14	2
E	<u>122253</u>	Hex Nut; ½ - 20	8
F	162836	Hex Bolt; ½" - 20 x 1.50"	8
G	<u>162838</u>	Lock Washer; ½ x .86 x .125	8
Н	<u>182274</u>	Hex Nut; %6" - 18 GR8	8
I	<u>276712</u>	Seal, Oil	1
J	<u>170997</u>	Washer; %6" Flat	8

Callout	Part #	Description
A	<u>176692</u>	Oil Seal - 2.855 ID x 3.880 OD, National #370150A
В	<u>183807</u>	Inner Bearing Cone - 10,000 (387A)
C	<u>183463</u>	Inner Bearing Cup/Race - 10,000 (382A)
D	<u>183536</u>	Drum Mounting Bolt
E	183662	Brake Drum Hub; 865 - ¾"; 4.75" Pilot
F	183168	Idler Hub, 865 - 5⁄8"; 4.75" Pilot
G	183537	Brake Drum, 865 - ¾"
Н	<u>183128</u>	Stud - ⁵ %" - 18; GR8
	<u>176321</u>	Flanged Wheel Nut ⅔ - 18
J	<u>205049</u>	Wheel Clamp Ring for 5%" Studs
K	<u>205048</u>	Wheel Nut - ¾" - 18; 90°
L	<u>124287</u>	Outer Bearing Cup/Race - 10,000 (25520)
M	<u>122066</u>	Outer Bearing Cone - 10,000 (25580)
N	<u>181895</u>	Spindle Washer - 1.50" x 3.00" OD
0	<u>181894</u>	Spindle Nut - 1 ½" - 12
Р	<u>181899</u>	Cotter Pin - ¼" x 2 ¼"
Q	183805	O-Ring (For Oil Cap)
R	183772	Oil Cap
S	<u>183804</u>	Rubber Plug (For Oil Cap)

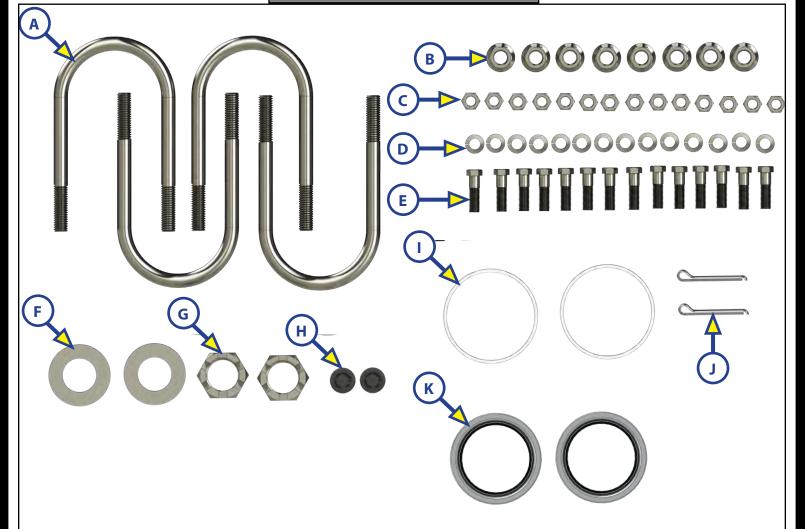

_

Electric Brake Assembly

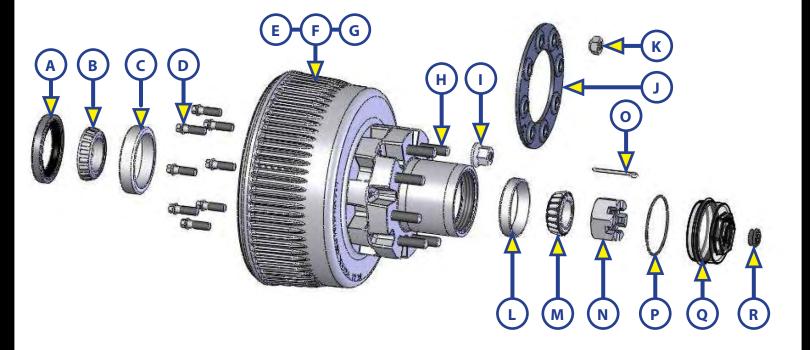
Part #	Description
<u>181935</u>	Electric Brake (LH) 12.25" x 3.38", 7 Bolt
<u>181936</u>	Electric Brake (RH) 12.25" x 3.38", 7 Bolt
330792	Shoe and Lining Kit - 12 ¼" x 3.38" (8,000-10,000), 1 BRK LH
3307921	Shoe and Lining Kit - 12 ¼" x 3.38" (8,000-10,000), 1 BRK RH

Hydraulic Brake Assembly

Part #	Description
213222	Brake; Hydraulic (LH) - 12.25" x 3.38", 7 Bolt
213223	Brake; Hydraulic (RH) - 12.25" x 3.38", 7 Bolt

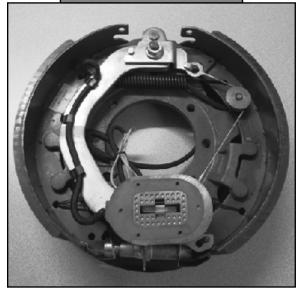


Part #	Description
294061	Disc Brake; 865 - 5/8" Studs, 7 Bolt Flange, Kit for one axle



Axle U-Bolt Service Kit Part #294378

Callout	Part #	Description	Quantity
А	181926	U-Bolt - 5% - 11 for 4" tube	4
В	<u>142833</u>	Flange Nut ⅔ - 11 Top Lock GR5	8
C	<u>122085</u>	Nut, 7/16 - 20 Hex	14
D	<u>122086</u>	Washer 7/16 x 3/4 x 11 GA Helical Lock	14
E	<u>207576</u>	Bolt 7/16 - 20 x 1 1/2 Hex GR5	14
F	<u>181895</u>	Washer - 1 1/2" ID x 3 OD	2
G	<u>181894</u>	Nut - 1 ½ - 12 - 6 Slot Castle GR2	2
Н	<u>183804</u>	Rubber Plug for 10,000 Oil Cap	2
I	183805	O-Ring 3 47/64 ID 4 OD .138 DIA	2
J	<u>181899</u>	Cotter Pin ¼ x 2 ¼	2
K	<u>176692</u>	Seal 2.855 ID x 3.88 OD Unitized Oil	2

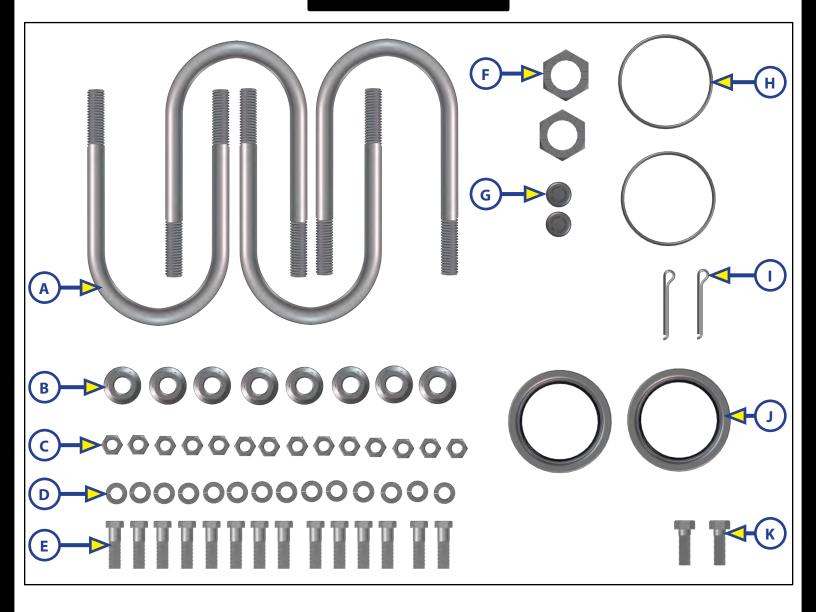

Callout	Part #	Description
A	<u>295924</u>	Seal - 3.125 Shaft x 4.50 " Bore, 12 K Unitized Oil
В	<u>293380</u>	Inner Cone Bearing - 12,000 (3984)
C	<u>293379</u>	Inner Cup/Race Bearing - 12,000 (3920)
D	<u>183536</u>	Drum Mounting Bolt
E	<u>297983</u>	Brake Drum Hub - 865 - 5⁄8"; 4.75" Pilot
F	301691	ldler Hub - 865 - ¾"; 4.75" Pilot
G	301940	Brake Drum - 865 - ¾"
Н	<u>183128</u>	Stud - %" - 18; GR8
I	<u>176321</u>	Flanged Wheel Nut 5⁄8 - 18
J	<u>205049</u>	Wheel Clamp Ring for 5/8" Studs
K	<u>205048</u>	Wheel Nut - 5⁄8" - 18; 90°
L	<u>293381</u>	Outer Cup/Race Bearing - 12,000 (3920)
М	<u>293382</u>	Outer Cone Bearing - 12,000 (28682)
N	<u>330037</u>	Spindle Nut - 1 ¾" - 12
0	<u>181899</u>	Cotter Pin - ¼" x 2 ¼"
Р	183805	O-Ring (For Oil Cap)
Q	183772	Oil Cap
R	<u>183804</u>	Rubber Plug (For Oil Cap)

12,000-LB AXLE WHEEL END COMPONENTS

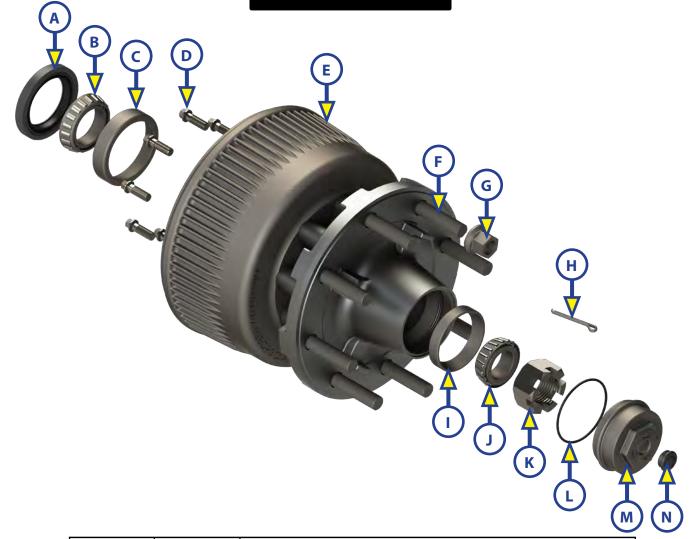
AXLES AND SUSPENSION

Electric Brake Assembly

Part #	Description
<u>297998</u>	Electric Brake (LH) 12.25" x 5", 7 Bolt (12,000)
<u>2979981</u>	Electric Brake (RH) 12.25" x 5", 7 Bolt (12,000)
330793	Shoe and Lining Kit - 12 ¼" x 5" (12,000), 1 BRK LH
3307931	Shoe and Lining Kit - 12 ¼" x 5" (12,000), 1 BRK RH


Disc Brake Assembly

Part #	Description
327573	12000# DISC - 865 5/8 STUDS, 7 BOLT FLG



12,000-LB AXLE WHEEL END COMPONENTS

Callout	Part #	Description	Quantity
А	2961681	U-Bolt - ¾ - 11 for 5" tube	4
В	<u>142833</u>	Flange Nut 5⁄8 - 11 Top Lock GR5	8
C	<u>122085</u>	Nut, 7⁄16 - 20 Hex	14
D	<u>122086</u>	Washer 7/16 x 3/4 x 11 GA Helical Lock	14
E	<u>207576</u>	Bolt 7/16 - 20 x 1 ½ Hex GR5	14
F	<u>330037</u>	Nut - 1 ¾ - 12 - 6 Slot Castle GR2	2
G	<u>183804</u>	Rubber Plug for 10,000 Oil Cap	2
Н	183805	O-Ring 3 47/64 ID 4 OD .138 DIA	2
I	<u>181899</u>	Cotter Pin ¼ x 2 ¼	2
J	<u>295924</u>	Seal - 3.125 Shaft x 4.50 " Bore, 12 K Unitized Oil	2
К	162836	Bolt ½" - 20 x 1 ½"	2

Callout	Part #	Description
A	<u>295924</u>	Seal - 3.125" Shaft x 4.50" Bore, National #B370014BGR
В	<u>293380</u>	Bearing - Cone, 16K Inner (3984)
С	<u>293379</u>	Bearing - Cup/Race, 16K Inner (3920)
D	<u>183536</u>	Drum Mounting Bolt
E	353323	Brake Drum Hub - 8 on 275mm, M22 studs
F	352774	Stud - M22 x 1.5 x 4.79" Gr. 10.9
G	352303	Nut, M22 x 1.5
н	<u>181899</u>	Cotter Pin - ¼" x 2 ¼"
I	<u>293381</u>	Bearing - Cup/Race, 16K Outer (28622)
J	<u>293382</u>	Bearing - Cone, 16K Outer (28682)
K	<u>330037</u>	Spindle Nut - 1 ¾" - 12
L	183805	O-Ring For Oil Cap
М	183772	Oil Cap
N	<u>183804</u>	Rubber Plug For Oil Cap
	358550	Spindle Washer 1 ¾" x 3" (Not pictured)

Part #	Brakes
<u>297998</u>	Electric Brake (LH) 12.25" x 5", 7 Bolt (16K)
<u>2979981</u>	Electric Brake (RH) 12.25" x 5", 7 Bolt (16K)
<u>207576</u>	Brake Bolt 7/16 - 20 x 1 ½
<u>122086</u>	Brake Lock Washer 7/16
<u>122085</u>	Brake Hex Nut 7⁄16 - 20
Part #	Brake Kit
330793	Shoe and Lining Kit - 12 ¼" x 5" LH (16K)
3307931	Shoe and Lining Kit - 12 ¼" x 5" RH (16K)
293115	12 ¼" Magnet Kit, 16K

LIPPERT Components®

The contents of this manual are proprietary and copyright protected by Lippert Components, Inc. ("LCI"). LCI prohibits the copying or dissemination of portions of this manual unless prior written consent from an authorized LCI representative has been provided. Any unauthorized use shall void any applicable warranty. The information contained in this manual is subject to change without notice and at the sole discretion of LCI. Revised editions are available for free download from www.lci1.com.

Please recycle all obsolete materials.

For all concerns or questions, please contact Lippert Components, Inc. Ph: (574) 537-8900 | Web: <u>lci1.com</u> | Email: <u>customerservice@lci1.com</u>